The hyper-constrained nucleoside, methylene-bridged hexopyranosyl nucleoside (BHNA) was incorporated into the antisnese oligonucleotides (AON), which show more preference for binding toward the complementary RNA (T m loss by ca 5°C) than that with the complementary DNA (T m loss by 10°C), vis-à-vis corresponding native duplex. The origin of reduction of T m of the duplexes formed by the BHNA incorporated AON and the complementary RNA or DNA was further investigated by thermal denaturation study with the single-mismatched DNA or RNA, CD spectroscopy, RNase H digestion study, as well as by molecular model building. These studies showed that the introduction of BHNA causes only a limited local conformational perturbation in the AON/RNA heteroduplex, whereas it affects the global conformation in the AON-DNA duplex. BHNA incorporated AONs also show improved stability in the human blood serum, which may prove to have some potential therapeutic application.