Tumoral hypoxia is related to severe structural abnormalities of tumor microvessels, leading to deteriorated O 2 diffusion. This decreased O 2 concentration in cancer cells compromises cellular functions, besides being responsible for resistance to radiation therapy. Consequently, it is very important to know the hypoxic status of a tumor. In this review, the different methodologies available for evaluating cellular hypoxia in vivo are discussed, particularly those in which the hypoxia information is obtained through imaging. Among these the nuclear medicine approach uses ligands to complex with radionuclides. The resulting radioactive complexes which may be single photon or positron emitters, are very useful as imaging probes. The nature of ligands and their corresponding complexes, with application or potential application as hypoxia detectors, will be described. A summary of the most significant results so far obtained in clinical or preclinical applications will also be discussed.