An important technique to realize novel electron-and/or proton-based functionalities is to use a proton−electron coupling mechanism. When either a proton or electron is excited, the other one is modulated, producing synergistic functions. However, although compounds with proton-coupled electron transfer have been synthesized, crystalline molecular compounds that exhibit proton-transfercoupled spin-transition (PCST) behavior have not been reported. Here, we report the first example of a PCST Fe(II) complex, wherein the proton lies on the N of hydrazone and pyridine moieties in the ligand at high-spin and low-spin Fe(II), respectively. When the Fe(II) complex is irradiated with light, intramolecular proton transfer occurs from pyridine to hydrazone in conjunction with the photoinduced spin transition via the PCST mechanism. Because the light-induced excited high-spin state is trapped at low temperatures in the Fe(II) complexa phenomenon known as the light-induced excited-spinstate trapping effectthe light-induced proton-transfer state, wherein the proton lies on the N of hydrazone, is also trapped as a metastable state. The proton transfer was accomplished within 50 ps at 190 K. The bistable nature of the proton position, where the position can be switched by light irradiation, is useful for modulating proton-based functionalities in molecular devices.