Human neutrophil elastase (HNE) is a serine protease that degrades matrix proteins. An excess of HNE may trigger several pathological conditions, such as psoriasis. In this work, we aimed to synthesize, characterize and formulate new HNE inhibitors with a 4-oxo-β-lactam scaffold with less toxicity, as well as therapeutic index in a psoriasis context. HNE inhibitors with 4-oxo-β-lactam scaffolds were synthesized and characterized by NMR, FTIR, melting point, mass spectrometry and elemental analysis. In vitro cytotoxicity and serine protease assays were performed. The compound with the highest cell viability (AAN-16) was selected to be incorporated in an emulsion (AAN-16 E) and in a microemulsion (AAN-16 ME). Formulations were characterized in terms of organoleptic properties, pH, rheology, droplet size distribution, in vitro drug release and in vivo psoriatic activity. All compounds were successfully synthesized according to analytical methodology, with good yields. Both formulations presented suitable physicochemical properties. AAN-16 E presented the most promising therapeutic effects in a murine model of psoriasis. Overall, new HNE inhibitors were synthesized with high and selective activity and incorporated into topical emulsions with potential to treat psoriasis.