This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.
b s t r a c tThe interaction of chitosan and chitin with monovalent and divalent late transition metal ions was studied by means of density functional theory. The calculations were performed at the B3LYP/6-31+G ⁄⁄ level of theory using glucosamine and N-acetylglucosamine monomers as models of chitosan and chitin, respectively, in the absence and in the presence of a few water molecules. The calculations suggest that N-acetylglucosamine is more acidic than glucosamine and that the most stable metal complexes with each of these two molecules have similar stabilities. In the case of the interaction of these two molecules with monovalent cations, the most stable complexes are those with Ni(I). In the case of the divalent cations, complexes with Cu(II) are more favourable, which is in good agreement with the available experimental data.