In this study, we compare the proteasome inhibition capabilities of two anticancer candidates, [Ni(LIA)2] (1) and [Zn(LIA)2] (2), where LIA- is the deprotonated form of the ligand 2,4-diiodo-6-(((2-pyridinylmethyl)amino)methyl)phenol.
Species 1 contains nickel(II), a considerably inert ion that favors covalency, whereas 2 contains zinc(II), a labile transition metal ion that favors predominantly ionic bonds.
We report on the synthesis and characterization of 1 and 2 using various spectroscopic, spectrometric, and structural methods. Furthermore, the pharmacological effects of 1 and 2, along with the salts NiCl2 and ZnCl2, were evaluated in vitro and in cultured human cancer cells in terms of their proteasome-inhibitory and apoptotic cell death-inducing capabilities. It is shown that neither NiCl2 nor 1 have the ability to inhibit the proteasome activity at any sustained levels. However, ZnCl2 and 2 showed superior inhibitory activity to the chymotrypsin-like activity of both 26S proteasome (IC50 = 5.7 and 4.4 μmol/L, respectively) and purified 20S proteasome (IC50 = 16.6 and 11.7 μmol/L, respectively) under cell-free conditions. Additionally, inhibition of proteasomal activity in cultured prostate cancer cells by 2 was associated with higher levels of ubiquitinated proteins and apoptosis. Treatment with either the metal complex or the salt was relatively non-toxic toward human normal cells. These results strengthen the current working hypothesis that fast ligand dissociation is required to generate an [MLIA]+ pharmacophore, capable of interaction with the proteasome. This interaction, possibly via N-terminal threonine aminoacids present in the active sites, renders the proteasome inactive. Our results present a compelling rationale for 2, along with its gallium(III) and copper(II) congeners to be further investigated as potential anticancer drugs that act as proteasome inhibitiors.