In the reaction of zinc(II) sulfate and the chloride salt of 2-acetylpyridine-aminoguanidine, two types of complex were obtained, i.e., [Zn(H2O)6](H2L)2(SO4)3·3H2O and [Zn(L)H2O(SO4)]·H2O, depending on the presence of LiOAc as the deprotonating agent. The physicochemical, structural, and photoluminescence properties of the complexes were examined. In the first complex, obtained in the absence of LiOAc, the Schiff base had the role of a counter-ion in its doubly protonated form, while in the presence of LiOAc, upon deprotonation, coordination takes place, and thus the Schiff base acts as a tridentate N3 ligand. In the latter complex, the ligand is coordinated through pyridine, azomethine, and the imino nitrogen of the aminoguanidine residue, leading to formation of two fused five-membered chelate rings. Both the examined complexes, as well as the ligand itself, show high photoluminescence.