Reaction of copper(II) cyanate with pyrazine leads to the formation of [Cu(NCO)2(pyrazine)]n (1), in which the Cu2+ cations are coordinated by two nitrogen atoms of the pyrazine ligands, as well as by four nitrogen atoms of the cyanate anions within a slightly distorted octahedral coordination. In the crystal structure the Cu2+ cations are connected by the pyrazine ligands into chains which are further linked by the cyanate anions through asymmetric μ‐1,1‐NCO coordination into layers. On heating compound 1 transforms quantitatively to copper(II) cyanate which decompose to elemental copper on further heating. No ligand deficent intermediates are observed. Magnetic measurements reval an antiferromagnetic ordering at lower temperatures mediated by the π‐system of the aromatic pyrazine ligand as well as net ferromagnetic interactions mediated by the μ‐1,1‐NCO bridging cyanato anions. A search in the Cambridge Crystal Structure Database shows that the terminal coordination mode in cyanato complexes as well as their azido and thiocyanato analogs is obviously energetically favored. In addition, a comparison of their symmetric and asymmetric end‐on (μ‐1,1) as well as end‐to‐end (μ‐1,3) bridging modes reveal interesting correlations.