Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Silicon (Si), stands out for its abundant resources, eco‐friendliness, affordability, high capacity, and low operating potential, making it a prime candidate for high‐energy‐density lithium‐ion batteries (LIBs). Notably, the breakthrough use of nanostructured Si (nSi) has paved the way for the commercialization of Si anodes. Despite this, challenges like high processing costs, severe side reactions, and low volumetric energy density have impeded widespread industrial adoption. Micron‐scale Si (µSi) has always faced setbacks compared to nSi due to its greater volume expansion. However, recent years have witnessed a resurgence of interest in µSi‐based anodes. Capitalizing on its inherent advantages, including low cost and high tap density, µSi has once again captured the attention of both academic and industrial communities. This review begins by contrasting the strengths and weaknesses of µSi and nSi, then outline potential solutions to enhance µSi performance, covering aspects like structural regulation, composite anodes, binder design, and electrolyte exploration. Additionally, this work explores the application of machine learning‐assisted high‐throughput screening. Concluding the review, this work provides insights into the future prospects of µSi in LIBs, outlining challenges and proposing integrated coping strategies. This review anticipates that it will provide valuable perspectives for the commercial application of high‐energy‐density Si‐based anodes.
Silicon (Si), stands out for its abundant resources, eco‐friendliness, affordability, high capacity, and low operating potential, making it a prime candidate for high‐energy‐density lithium‐ion batteries (LIBs). Notably, the breakthrough use of nanostructured Si (nSi) has paved the way for the commercialization of Si anodes. Despite this, challenges like high processing costs, severe side reactions, and low volumetric energy density have impeded widespread industrial adoption. Micron‐scale Si (µSi) has always faced setbacks compared to nSi due to its greater volume expansion. However, recent years have witnessed a resurgence of interest in µSi‐based anodes. Capitalizing on its inherent advantages, including low cost and high tap density, µSi has once again captured the attention of both academic and industrial communities. This review begins by contrasting the strengths and weaknesses of µSi and nSi, then outline potential solutions to enhance µSi performance, covering aspects like structural regulation, composite anodes, binder design, and electrolyte exploration. Additionally, this work explores the application of machine learning‐assisted high‐throughput screening. Concluding the review, this work provides insights into the future prospects of µSi in LIBs, outlining challenges and proposing integrated coping strategies. This review anticipates that it will provide valuable perspectives for the commercial application of high‐energy‐density Si‐based anodes.
Porous silicon (Si) has a tetrahedral structure similar to that of sp3‐ hybridized carbon atoms in a typical diamond structure, which affords it unique chemical and physical properties including an adjustable intrinsic bandgap, a high‐speed carrier transfer efficiency. It has shown great potential in photocatalysis, rechargeable batteries, solar cells, detectors, and electrocatalysis. This review introduces various porous Si‐supported electrocatalysts and analyzes the reasons why porous Si is used as a new carrier/active sites from the perspectives of its molecular structure, electronic properties, synthesis methods, etc. The electrochemical applications of porous Si‐based electrocatalysts in energy conversion reactions such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and total water decomposition together with lithium‐ion batteries (LIBs) and supercapacitors in energy storage are summarized. The challenges and future research directions for porous Si are also discussed. This review aims to deepen the understanding of porous Si and promote the development and applications of this new type of Si material.
Silicon (Si) has emerged as a potent anode material for lithium-ion batteries (LIBs), but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation, leading to material pulverization and capacity degradation. Recent research on nanostructured Si aims to mitigate volume expansion and enhance electrochemical performance, yet still grapples with issues like pulverization, unstable solid electrolyte interface (SEI) growth, and interparticle resistance. This review delves into innovative strategies for optimizing Si anodes’ electrochemical performance via structural engineering, focusing on the synthesis of Si/C composites, engineering multidimensional nanostructures, and applying non-carbonaceous coatings. Forming a stable SEI is vital to prevent electrolyte decomposition and enhance Li+ transport, thereby stabilizing the Si anode interface and boosting cycling Coulombic efficiency. We also examine groundbreaking advancements such as self-healing polymers and advanced prelithiation methods to improve initial Coulombic efficiency and combat capacity loss. Our review uniquely provides a detailed examination of these strategies in real-world applications, moving beyond theoretical discussions. It offers a critical analysis of these approaches in terms of performance enhancement, scalability, and commercial feasibility. In conclusion, this review presents a comprehensive view and a forward-looking perspective on designing robust, high-performance Si-based anodes the next generation of LIBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.