Due to practical limitations on size and cost, aerial vehicles generally cannot equip complicated sensors to form sensor array for target localization. In this paper, we investigate the direct position determination (DPD) of stationary source via single moving sensor. First, we analyze artificial signal structure and construct the DPD model with the frame periodicity of artificial signal. The model incorporates Doppler information extracted from both transformation frames and adjacent samples into target localization. Secondly, we consider the effect of oscillator instability and present an iterative solution for joint estimation of target location and phase noise caused by oscillator imperfection. The proposed technique fully exploits periodic structure of artificial wireless signal, which leads to significant enhancement in localization performance. Both theoretical analysis and simulations are presented to confirm its effectiveness.