In early stages of research and innovation a precise investigation of technological risks, as well as the analysis of particular beneficial features, is confronted with a lack of knowledge about exact process or product qualities, application contexts and intentions of users. Therefore, an appropriate identification of anticipated risks, accompanied by the achievements of synthetic biology, should rather focus on basic properties and functionalities of the objects of synthetic biology which will be exploited in future products and processes. Accordingly, the aim of this chapter is to determine major risk factors of synthetic biology creations with a focus on the technology itself. In consideration of the demand to cover these risks by appropriate counter measures, the question is raised, whether there are suitable strategies to achieve a high level of safety. In this regard, the discussion will be extended to feasible alternatives, e.g. by introducing trophic and semantic isolation strategies for synthetic organisms as an approach to overcome major drawbacks of classical biosafety mechanisms. Finally, functional reduction, a concept which is already aspiring to achieve efficient biosynthesis, is suggested as a measure for the reduction of risk-related functionalities. This strategy is worth further investigation if the full potential of synthetic biology is to be obtained in a safe and sustainable way.