2024
DOI: 10.1038/s41598-024-61492-7
|View full text |Cite
|
Sign up to set email alerts
|

Synthetic CT generation based on CBCT using improved vision transformer CycleGAN

Yuxin Hu,
Han Zhou,
Ning Cao
et al.

Abstract: Cone-beam computed tomography (CBCT) is a crucial component of adaptive radiation therapy; however, it frequently encounters challenges such as artifacts and noise, significantly constraining its clinical utility. While CycleGAN is a widely employed method for CT image synthesis, it has notable limitations regarding the inadequate capture of global features. To tackle these challenges, we introduce a refined unsupervised learning model called improved vision transformer CycleGAN (IViT-CycleGAN). Firstly, we in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 41 publications
0
0
0
Order By: Relevance