Reliable information about isobaric heat capacities CP is necessary to determine the energies of organic compounds and chemical processes at an arbitrary temperature. In this work, the possibility of theoretical estimation of CP by the homodesmotic method is analyzed. Three cases of CP calculation applying the methodology of the complete set of homodesmotic reactions (CS HDRs) are considered: the gas- and liquid-phase CP of organic compounds of various classes at 298 K (the mean absolute value of reaction heat capacity, MA ΔCP = 1.44 and 2.83 J/mol·K for the gas and liquid phase, correspondingly); and the gas-phase CP of n-alkanes C2–C10 in the temperature range of 200–1500 K with an average error in calculating the heat capacity of 0.93 J/mol·K. In the latter case, the coefficients of the Shomate equation are determined for all n-alkanes that satisfy the homodesmoticity condition. New values of gas- and liquid-phase heat capacities are obtained for 41 compounds. The CS HDRs-based approach for estimating the CP of organic compounds is characterized by high accuracy, which is not inferior to that of the best CP-additive schemes and allows us to analyze the reproducibility of the calculation results and eliminate unreliable reference data.