We have studied the growth and division of xerC, xerD and dif mutants of Escherichia coli, which are unable to resolve dimer chromosomes. These mutants express the Dif phenotype, which includes reduced viability, SOS induction and filamentation, and abnormal nucleoid morphology. Growth was studied in synchronous cultures and in microcolonies derived from single cells. SOS induction and filamentation commenced after an apparently normal cell division, which sheared unresolved dimer chromosomes. This has been called guillotining. Microcolony analysis demonstrated that cell division in the two daughter cells was inhibited after guillotining, and microcolonies formed that consisted of two filaments lying side by side. Growth of these filaments was severely reduced in hipA+ strains. We propose that guillotining at dif destroys the expression of the adjacent hipBA genes and, in the absence of continued formation of HipB, HipA inhibits growth. The length of the filaments was also affected by SfiA: sfiA dif hipA mutants initially formed filaments, but cell division at the ends of the filaments ultimately produced a number of DNAânegative cells. If SOS induction was blocked by lexA3 (Indâ), filaments did not form, and cell division was not inhibited. However, pedigree analysis of cells in microcolonies demonstrated that lethal sectoring occurred as a result of limited growth and division of dead cells produced by guillotining.