“…Specifically, mutant KRAS increases the levels of Glucose transport 1 protein at the cell surface, leading also to an increased expression of several other molecules involved in glucose metabolism, such as hexokinase 1 and 2, phosphofructokinase 1, enolase 1, lactate dehydrogenase A, as well as molecules involved in other biosynthetic pathways (glucosamine-fructose-6-phosphate aminotransferase 1, ribulose-5-phosphate-3 epimerase, ribulose-5-phosphate isomerase, aspartate transaminase) [11,25]. In addition, the identification of synthetic lethal interactors of KRAS may provide useful targets for therapeutic intervention in KRAS-driven cancers [26][27][28][29]. To date, several functional genetic screens have identified KRAS synthetic lethal interactors with targetable potential, including kinases and other molecules involved in pathways associated with proliferation and apoptosis (extensively reviewed in [28]).…”