The repair of DNA double-stranded breaks (DNAdsb) through non-homologous end joining (NHEJ) is a prerequisite for the proper development of the central nervous system and the adaptive immune system. Yet, mice with Xlf or PAXX loss of function are viable and present with very mild immune phenotypes, although their lymphoid cells are sensitive to ionizing radiation attesting for the role of these factors in NHEJ. In contrast, we show here that mice defective for both Xlf and PAXX are embryonically lethal owing to a massive apoptosis of post-mitotic neurons, a situation reminiscent to XRCC4 or DNA Ligase IV KO conditions. The development of the adaptive immune system in Xlf − / − PAXX −/− E18.5 embryos is severely affected with the block of B-and T-cell maturation at the stage of IgH and TCRβ gene rearrangements, respectively. This damaging phenotype highlights the functional nexus between Xlf and PAXX, which is critical for the completion of NHEJ-dependent mechanisms during mouse development. Cell Death and Differentiation (2018) 25, 444-452; doi:10.1038/cdd.2017; published online 27 October 2017All living organisms are subjected to multitude sources of DNA damage during their lifespan, either as a result of external assault or endogenous physiological processes.1 Among endogenous sources of physiological DNAdsb is the somatic rearrangement of immunoglobulin (Ig) and TCR genes in B and T lymphocytes, respectively, during the diversification of the adaptive immune system through V(D)J recombination.2 DNA double-stranded breaks (DNAdsb) are considered the most toxic lesions. DNAdsbs are repaired by two main mechanisms: the homologous recombination (HR) in cycling cells, when a sister chromatid is available as DNA repair template, and the non-homologous end joining (NHEJ) during all phases of the cell cycle.NHEJ proceeds via the simple religation of DNA ends without the need for a repair template.3 Briefly, the NHEJ is composed of seven core factors comprising the Ku70/80/ DNA-PKcs (DNA-dependent protein kinase catalytic subunit) complex, which recognizes and protects the broken DNA ends, the Artemis endo/exonuclease, which participates, when needed, in processing the DNA ends and the XRCC4/ DNA-Ligase IV/Xlf complex, which ultimately reseals the DNA break. The critical function of the NHEJ apparatus in various aspects of higher eukaryote development has been extensively perceived in several animal and human pathological conditions. As emblematic examples, loss of function of either XRCC4 or DNA ligase IV results in embryonic lethality in mice 4,5 and mutations in Artemis or DNA-PKcs result in severe combined immunodeficiency conditions in both men and mice, owing to aborted V(D)J recombination. 6 In addition, defects in NHEJ results in genetic instability and the propensity to develop various types of cancers, notably leukemia and lymphomas. Recently, a new DNA repair factor, PAXX (PAralog of XRCC4 and Xlf, also known as C9orf142 or XLS), has been identified independently by three laboratories based on bioinformatic...