Background:Chemotherapeutic resistance is responsible for treatment failure. Immunotherapy is important in ovarian cancer (OC). Systematic exploration of immunogenic landscape and reliable immune gene-based prognostic biomarkers or signature is necessary to be identified. This study aims to identify the immune gene-based prognostic biomarkers and regulatory factors, further to develop an individualized prediction signature.Methods: This study systematically explored the gene expression profiles from RNA-seq data set for The Cancer Genome Atlas (TCGA) ovarian cancer. Differentially expressed and survival-associated immune genes and transcription factors (TFs) were identified using immune genes from ImmPort dataset and TFs from Cistoma database. We developed the prognostic signature based on survival associated immune genes with LASSO (Least absolute shrinkage and selection operator) Cox regression analysis. Further, Network analysis was performed to uncover the potential molecular mechanisms of immune-related genes with the help of computational biology. Results: The prognostic signature, a weighted combination of the 21 immune-related genes, performed moderately in survival prediction with AUC was 0.746, 0.735, and 0.749 for 1, 3, and 5 year overall survival, respectively. Network analysis uncovered the regulatory role of TFs in immune genes. Intriguingly, the prognostic signature reflected infiltration of some immune cell subtypes.Conclusions: We first constructed a signature with 21 immune genes of clinical significance, which showed promising predictive value in the surveillance, prognosis, even immunotherapy response of OC patients.