In the realm of agriculture, crop yields of fundamental cereals such as rice, wheat, maize, soybeans, and sugarcane are adversely impacted by insect pest invasions, leading to significant reductions in agricultural output. Traditional manual identification of these pests is labor-intensive and time-consuming, underscoring the necessity for an automated early detection and classification system. Recent advancements in machine learning, particularly deep learning, have provided robust methodologies for the classification and detection of a diverse array of insect infestations in crop fields. However, inaccuracies in pest classification could inadvertently precipitate the use of inappropriate pesticides, further endangering both agricultural yields and the surrounding ecosystems. In light of this, the efficacy of nine distinct pre-trained deep learning algorithms was evaluated to discern their capability in the accurate detection and classification of insect pests. This assessment utilized two prevalent datasets, comprising ten pest classes of varied sizes. Among the transfer learning techniques scrutinized, adaptations of ResNet-50 and ResNet-101 were deployed. It was observed that ResNet-50, when employed in a transfer learning paradigm, achieved an exemplary classification accuracy of 99.40% in the detection of agricultural pests. Such a high level of precision represents a significant advancement in the field of precision agriculture.