Currently, the process of tracking moving objects and determining their indoor location is considered to be one of the most attractive applications that have begun to see widespread use, especially after the adoption of this technology in some smartphone applications. The great developments in electronics and communications systems have provided the basis for tracking and location systems inside buildings, so-called indoor positioning systems (IPSs). The ultra-wideband (UWB) technology is one of the important emerging solutions for IPSs. This radio communications technology provides important characteristics that distinguish it from other solutions, such as secure and robust communications, wide bandwidth, high data rate, and low transmission power. In this paper, we review the implementation of the most important real-time indoor positioning and tracking systems that use ultra-wideband technology for tracking and localizing moving objects. This paper reviews the newest in-market UWB modules and solutions, discussing several types of algorithms that are used by the real-time UWB-based systems to determine the location with high accuracy, along with a detailed comparison that saves the reader a lot of time and effort in choosing the appropriate UWB-module/method/algorithm for real-time implementation.