An adsorber in which sorption processes occur is one of the key components of an adsorption chiller. Precise real-time monitoring of and supervision over these processes are particularly important to ensure their proper execution. The article describes the experimental stand used for the measurement of the adsorber's operating parameters and analyses pressure measurement uncertainties, taking into account the impact of the temperature on the test system filled with the adsorbent in the form of silica gel, while concurrently considering the influence of other factors (e.g. the environment, the A/A, and A/D conversion, or data processing) on measurement uncertainties. A complex analysis of uncertainties was carried out, including the results of the statistical analysis of the measurement data obtained from long-term experimental tests of the object and the uncertainties of the pressure measuring chain by the type B method, involving the consideration of interactions between the system components and the temperature impact on the propagation of uncertainties. As part of the analysis, the characteristic stages of the data collection and processing operations related to the sampling rate and measurement intervals were separated. The article presents the prototype test stand and original pressure measurement system for the verification of a single-bed adsorber working below 10 hPa.The novel construction of a single-bed adsorber was used as a test object. Furthermore, in this paper, the developed algorithm of the research method implemented in the system was discussed and positively verified.