High-level synthesis (HLS) allows hardware designers to think algorithmically and not worry about low-level, cycleby-cycle details. This provides the ability to quickly explore the architectural design space and trade-offs between resource utilization and performance. Unfortunately, security evaluation is not a standard part of the HLS design flow. In this work, we aim to understand the effects of memory-based HLS optimizations on power side-channel leakage. We use Xilinx Vivado HLS to develop different cryptographic cores, implement them on a Spartan-6 FPGA, and collect power traces. We evaluate the designs with respect to resource utilization, performance, and information leakage through power consumption. And we have two important observations and contributions. First, the choice of resource optimization directive results in different levels of side-channel vulnerabilities. Second, the partitioning optimization directive can greatly compromise the hardware cryptographic system through power side-channel leakage due to the deployment of memory control logic. We describe an evaluation procedure for power side-channel leakage and use it to make best-effort recommendations about how to design more secure architectures in the cryptographic domain.