Design of biosensors refers to the field of interdisciplinary research, therefore, it is necessary to develop a unified systems approach that is invariant to the physical nature of the used phenomena and processes to create an automated system for conceptual design of such elements. It is appropriate to choose the fundamentals of non-equilibrium thermodynamics as the basis for the development of this approach. This article discusses the energy-information model of diffusion phenomena, as the processes of diffusion is the general type of the processes that is occurring in bioselective elements. A number of physical effects are described by this model. In this paper authors continue researches in the field of automation of design of biosensors which was presented at the 6th International Conference on Information, Intelligence, Systems and Applications. The new information technology of functional and structural design of biosensors is described. It is based on the energy-information model of chains, invariant to the physical nature of the processes occurring in technical devices. And it uses the device parametric structural diagrams allowing algorithmization of the search and selection of new technical solutions with estimation of their performance.