Background
This study aimed to investigate, using Andersen’s model of health care utilization, factors associated with COVID-19 testing among adults in nine low- and middle- income countries.
Methods
In between 10 December 2020 and 9 February 2021, an online survey was organized in nine low- and middle-income countries. In total 10,183 adults (median age 45 years, interquartile range 33–57 years, range 18–93 years), including 6470 from Brazil, 1738 Malaysia, 1124 Thailand, 230 Bangladesh, 219 DR Congo, 159 Benin, 107 Uganda, 81 Malawi and 55 from Mali participated in the study. COVID-19 testing/infection status was assessed by self-report.
Results
Of the 10,183 participants, 40.3% had ever tested for COVID-19, 7.3% tested positive, and 33.0% tested negative. In an adjusted logistic regression model, predisposing factors (residing in Brazil, postgraduate education), enabling/disabling factors (urban residence, higher perceived economic status, being a student or worker in the health care sector, and moderate or severe psychological distress), and need factors (having at least one chronic condition) increased the odds of COVID-19 testing. Among those who were tested, participants residing in Bangladesh, those who had moderate to severe psychological distress were positively associated with COVID-19 positive diagnosis. Participants who are residing in Malaysia and Thailand, and those who had higher education were negatively associated with a COVID-19 positive diagnosis. Considering all participants, higher perceived economic status, being a student or worker in the health sector, and moderate or severe psychological distress were positively associated with a COVID-19 positive diagnosis, and residing in Malaysia, Thailand or five African countries was negatively associated with a COVID-19 positive diagnosis.
Conclusion
A high rate of COVID-19 testing among adults was reported in nine low-and middle-income countries. However, access to testing needs to be increased in Africa. Moreover, COVID-19 testing programmes need to target persons of lower economic status and education level who are less tested but most at risk for COVID-19 infection.