Background: The use of machine learning and deep learning techniques in the research on diabetes has garnered attention in recent times. Nonetheless, few studies offer a thorough picture of the knowledge generation landscape in this field. To address this, a bibliometric analysis of scientific articles published from 2000 to 2022 was conducted to discover global research trends and networks and to emphasize the most prominent countries, institutions, journals, articles, and key topics in this domain. Methods: The Scopus database was used to identify and retrieve high-quality scientific documents. The results were classified into categories of detection (covering diagnosis, screening, identification, segmentation, among others), prediction (prognosis, forecasting, estimation), and management (treatment, control, monitoring, education, telemedicine integration). Biblioshiny and RStudio were used to analyze the data. Results: A total of 1773 articles were collected and analyzed. The number of publications and citations increased substantially since 2012, with a notable increase in the last 3 years. Of the 3 categories considered, detection was the most dominant, followed by prediction and management. Around 53.2% of the total journals started disseminating articles on this subject in 2020. China, India, and the United States were the most productive countries. Although no evidence of outstanding leadership by specific authors was found, the University of California emerged as the most influential institution for the development of scientific production. Conclusion: This is an evolving field that has experienced a rapid increase in productivity, especially over the last years with exponential growth. This trend is expected to continue in the coming years.