Design-for-manufacturability (DFM) guidelines are recommended layout design practices intended to capture layout features that are difficult to manufacture correctly. Avoiding such features prevents the occurrence of potential systematic defects. Layout features that result in DFM guideline violations may not be avoided completely due to the design constraints of chip area, performance, and power consumption. A framework for translating DFM guideline violations into potential systematic defects, and faults, was described earlier.In a cell-based design, the translated faults may be internal or external to cells. In this article, we focus on undetectable faults that are external to cells. Using a resynthesis procedure that makes fine changes to the layout while maintaining the design constraints, we target areas of the design where large numbers of external faults related to DFM guideline violations are undetectable. By eliminating the corresponding DFM guideline violations, we ensure that the circuit does not suffer from low-coverage areas that may result in detectable systematic defects escaping detection, but failing the circuit in the field. The layout resynthesis procedure is applied to benchmark circuits and logic blocks of the OpenSPARC T1 microprocessor. Experimental results indicate that the improvement in the coverage of potential systematic defects is significant.