To be able to provide appropriate services in social and human application contexts, smart cyber-physical systems (S-CPSs) need ampliative reasoning and decision-making (ARDM) mechanisms. As one option, procedural abduction (PA) is suggested for self-managing S-CPSs. PA is a knowledge-based computation and learning mechanism. The objective of this article is to provide a comprehensive description of the computational framework proposed for PA. Towards this end, first the essence of smart cyber-physical systems is discussed. Then, the main recent research results related to computational abduction and ampliative reasoning are discussed. PA facilitates beliefs-driven contemplation of the momentary performance of S-CPSs, including a ‘best option’-based setting of the servicing objective and realization of any demanded adaptation. The computational framework of PA includes eight clusters of computational activities: (i) run-time extraction of signals and data by sensing, (ii) recognition of events, (iii) inferring about existing situations, (iv) building awareness of the state and circumstances of operation, (v) devising alternative performance enhancement strategies, (vi) deciding on the best system adaptation, (vii) devising and scheduling the implied interventions, and (viii) actuating effectors and controls. Several cognitive algorithms and computational actions are used to implement PA in a compositional manner. PA necessitates not only a synergic interoperation of the algorithms, but also an objective-dependent fusion of the pre-programmed and the run time acquired chunks of knowledge. A fully fledged implementation of PA is underway, which will make verification and validation possible in the context of various smart CPSs.