In the present work, a hyperelastic constitutive model based on neural networks is proposed which fulfills all common constitutive conditions by construction, and in particular, is applicable to compressible material behavior. Using different sets of invariants as inputs, a hyperelastic potential is formulated as a convex neural network, thus fulfilling symmetry of the stress tensor, objectivity, material symmetry, polyconvexity, and thermodynamic consistency. In addition, a physically sensible stress behavior of the model is ensured by using analytical growth terms, as well as normalization terms which ensure the undeformed state to be stress free and with zero energy. The normalization terms are formulated for both isotropic and transversely isotropic material behavior and do not violate polyconvexity. By fulfilling all of these conditions in an exact way, the proposed physics-augmented model combines a sound mechanical basis with the extraordinary flexibility that neural networks offer. Thus, it harmonizes the theory of hyperelasticity developed in the last decades with the up-to-date techniques of machine learning. Furthermore, the non-negativity of the hyperelastic potential is numerically verified by sampling the space of admissible deformations states, which, to the best of the authors' knowledge, is the only possibility for the considered nonlinear compressible models. The applicability of the model is demonstrated by calibrating it on data generated with analytical potentials, which is followed by an application of the model to finite element simulations. In addition, an adaption of the model to noisy data is shown and its extrapolation capability is compared to models with reduced physical background. Within all numerical examples, excellent and physically meaningful predictions have been achieved with the proposed physicsaugmented neural network.