Single crystals of Sr(NO 3 ) 2 , Ba(NO 3 ) 2 and Pb(NO 3 ) 2 are grown from their aqueous solutions at a constant temperature of 35 °C by slow evaporation technique. Crystals of size 8 to 10 mm along one edge are obtained in a period of 10 days. Chemical etching technique has been employed to study the dislocations in these crystals. The dislocations are randomly distributed and the dislocation density is about 10 4 to 10 5 /cm 2 . Microhardness studies are made on as-grown (111) faces of these crystals upto a load of 100 g. The hardness of the crystals increases with an increase in load and thereafter it becomes independent of the applied load. These results are discussed on the basis of reverse indentation size effect. Meyer index number n for these crystals is estimated at both low and high load regions. An analysis of hardness data of these crystals as well as some other cubic crystals like alums and alkali halates are discussed using Gilman-Chin parameter H v /C 44 , where H v is the microhardness and C 44 is the shear constant.