BACKGROUND: MicroRNAs (miRNAs), a class of small non-coding endogenous RNAs, play key roles in various biological processes. Most plant viruses are transmitted by insect vectors. However, little is known about the function of miRNAs on plant virus-insect host interaction. RESULTS: We investigated the role of miR-315-5p in regulation of plant viral infection in insects using a rice black-streaked dwarf virus (RBSDV) and small brown planthopper (SBPH) interaction system. Our results showed that miR-315-5p had the highest expression level in 2nd-instar nymph, and was highly expressed in the salivary gland and midgut in SBPH. miR-315-5p was in response to and regulated RBSDV infection in SBPH. Injection of miR-315-5p mimic, agomir-315, significantly increased the RBSDV accumulation, whereas injection of miR-315-5p inhibitor, antagomir-315, reduced virus accumulation in SBPH. Furthermore, a melatonin receptor was identified as a target gene of miR-315-5p by the dual luciferase reporter assay. Knockdown of the melatonin receptor significantly increased the expression of RBSDV coat protein gene S10 and replication related genes, S5-1, S6, and S9-1. Furthermore, treatment with melatonin receptor antagonist luzindole and activator agomelatine significantly increased and reduced RBSDV accumulation in SBPH, respectively. Compared to the control, miR-315-5p did not affect the efficiency of RBSDV acquisition in SBPH. However, the efficiency of RBSDV transmission was significantly reduced after injecting antagomir-315. CONCLUSION: Taken together, our data reveal that miR-315-5p is beneficial for RBSDV infection in its insect vector by directly targeting a melatonin receptor. These findings provide a new insight to the function of miRNAs in virus-insect vector interaction.