A systematic survey of the accurate measurements of heavy-ion fusion cross sections at extreme sub-barrier energies is performed using the coupled-channels (CC) theory that is based on the proximity formalism. This work theoretically explores the role of the surface energy coefficient and energy-dependent nucleus-nucleus proximity potential in the mechanism of the fusion hindrance of 14 typical colliding systems with negative
-values, including 11B+197Au, 12C+198Pt, 16O+208Pb, 28Si+94Mo, 48Ca+96Zr, 28Si+64Ni, 58Ni+58Ni, 60Ni+89Y, 12C+204Pb, 36S+64Ni, 36S+90Zr, 40Ca+90Zr, 40Ca+40Ca, and 48Ca+48Ca, as well as five typical colliding systems with positive
-values, including 12C+30Si, 24Mg+30Si, 28Si+30Si, 36S+48Ca, and 40Ca+48Ca. It is shown that the outcomes based on the proximity potential along with the above-mentioned physical effects achieve reasonable agreement with the experimentally observed data of the fusion cross sections
, astrophysical
factors, and logarithmic derivatives
in the energy region far below the Coulomb barrier. A discussion is also presented on the performance of the present theoretical approach in reproducing the experimental fusion barrier distributions for different colliding systems.