2021
DOI: 10.54895/intech.v2i1.866
|View full text |Cite
|
Sign up to set email alerts
|

Systematic Literature Review: Penggunaan Algoritma K-Means Untuk Clustering di Indonesia dalam Bidang Pendidikan

Abstract: K-Means is a non-hierarchical data clustering method that can group data into several clusters based on data similarity, so that data with the same characteristics are grouped in one cluster and data with different characteristics are grouped in another cluster. The K-Means method can be used to process various data, including for clustering in the field of education. The use of the K-Means algorithm has been widely carried out but not many activities have been handled and are only often used for selection or … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
5
0
3

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(8 citation statements)
references
References 6 publications
0
5
0
3
Order By: Relevance
“…For this reason, mordants are used. A mordant in general is a metal salt that creates an affinity between the fiber and the dye [32] . In our work, the fabrics dyed with mordants have a good effect on the color nuance.…”
Section: Discussionmentioning
confidence: 69%
See 3 more Smart Citations
“…For this reason, mordants are used. A mordant in general is a metal salt that creates an affinity between the fiber and the dye [32] . In our work, the fabrics dyed with mordants have a good effect on the color nuance.…”
Section: Discussionmentioning
confidence: 69%
“…Samanta and Konar [32] indicate that aluminum sulfate or other metallic mordants anchored on a fiber combine chemically with certain functional groups present in natural dyes and are connected by coordinate/covalent bonds or hydrogen bonds and other interaction forces as shown in the following Figure 1 [32] . This explains the total absence of the parietin in all textile samples.…”
Section: Discussionmentioning
confidence: 91%
See 2 more Smart Citations
“…K-Means dikenal sebagai salah satu algoritma paling populer dalam clustering karena sifatnya yang sederhana dan efisien, seperti yang diakui oleh penelitian [9] yang menempatkannya sebagai salah satu dari 10 algoritma data mining teratas. Algoritma ini efektif dalam mengelompokkan data ke dalam cluster-cluster yang saling berdekatan, memfasilitasi analisis pola dan struktur data dengan cara yang mudah dimengerti dan diterapkan [10].…”
Section: Algoritma K-meansunclassified