2023
DOI: 10.20944/preprints202306.0492.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Systematic Model Complexity Reduction by Elimination of Irrelevant Layers in Convolutional Neural Networks

Abstract: Neural networks were treated as black boxes for a long time. Previous works have unearthed what aspects of an image were important for convolutional layers at different positions in the network. This was done using deconvolutional networks. In this paper, we examine how well a convolutional neural network performs when those convolutional layers which are relatively unimportant for a particular image (i.e., the image does not produce one of the strongest activations) are skipped in the training, validating, an… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 6 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?