Abstract:Neural networks were treated as black boxes for a long time. Previous works have unearthed what aspects of an image were important for convolutional layers at different positions in the network. This was done using deconvolutional networks. In this paper, we examine how well a convolutional neural network performs when those convolutional layers which are relatively unimportant for a particular image (i.e., the image does not produce one of the strongest activations) are skipped in the training, validating, an… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.