The injection of sulfate-containing seawater into an oil reservoir, for maintaining the reservoir pressure, can promote the growth of sulfate reducing bacteria and archaea near the injection wells, leading to the formation of sulfides such as hydrogen sulfide. However, intermediate sulfur species with different valence states, such as polythionates and polysulfides have been detected in several produced water samples, likely a result of phase partitioning, and chemical and microbial reactions. These sulfur species could affect the microbial communities (e.g., microbially influenced corrosion) and will impact the efficiency of souring mitigation methods. In addition, the presence of these sulfur species can result in operational, environmental, and treatment problems. Therefore, development and implementation of souring control strategies during production cycle of oil and gas reservoirs require identifying the origins, reactivity, and the partitioning behaviour of these compounds. This paper presents an overview of the known mechanisms responsible for reservoir souring and then focuses on the chemical reactions and sulfur species associated with production and consumption of hydrogen sulfide. In this work we highlight complexity of the sulfur chemistry and that the assumption that all the sulfate is reduced to hydrogen sulfide can lead to inappropriate souring management methods. The paper also reviews the detection and analysis methods used for sulfur compounds. The review demonstrates that there is a gap in the current souring models and methods due to the exclusion of key sulfur compounds and challenges in identifying and quantifying these compounds with respect to speed of analysis and sample stability.