We present a novel and simple method to numerically calculate Fisher information matrices for stochastic chemical kinetics models. The linear noise approximation is used to derive model equations and a likelihood function that leads to an efficient computational algorithm. Our approach reduces the problem of calculating the Fisher information matrix to solving a set of ordinary differential equations. This is the first method to compute Fisher information for stochastic chemical kinetics models without the need for Monte Carlo simulations. This methodology is then used to study sensitivity, robustness, and parameter identifiability in stochastic chemical kinetics models. We show that significant differences exist between stochastic and deterministic models as well as between stochastic models with time-series and time-point measurements. We demonstrate that these discrepancies arise from the variability in molecule numbers, correlations between species, and temporal correlations and show how this approach can be used in the analysis and design of experiments probing stochastic processes at the cellular level. The algorithm has been implemented as a Matlab package and is available from the authors upon request. U nderstanding the design principles underlying complex biochemical networks cannot be grasped by intuition alone (1). Their complexity implies the need to build mathematical models and tools for their analysis. One of the powerful tools to elucidate such systems' performances is sensitivity analysis (2). Large sensitivity to a parameter suggests that the system's output can change substantially with small variation in a parameter. Similarly large changes in an insensitive parameter will have little effect on the behavior. Traditionally, the concept of sensitivity has been applied to continuous deterministic systems described by differential equations to identify which parameters a given output of the system is most sensitive to; here, sensitivities are computed via the integration of the linearization of the model parameters (2).In modeling biological processes, however, recent years have have witnessed rapidly increasing interest in stochastic models (3), as experimental and theoretical investigations have demonstrated the relevance of stochastic effects in chemical networks (4,5). Although stochastic models of biological processes are now routinely being applied to study biochemical phenomena ranging from metabolic networks to signal transduction pathways (6), tools for their analysis are in their infancy compared to the deterministic framework. In particular, sensitivity analysis in a stochastic setting is usually, if at all, performed by analysis of a system's mean behavior or using computationally intensive Monte Carlo simulations to approximate finite differences of a system's output or the Fisher information matrix with associated sensitivity measures (7,8). The Fisher information has a prominent role in statistics and information theory: It is defined as the variance of the score and therefore all...