Honey is a highly consumed natural product produced by bees which is susceptible to fraudulent practices, some of them regarding its botanical origin. Two HPLC-UV non-targeted fingerprinting approaches were evaluated in this work to address honey characterization, classification, and authentication based on honey botanical variety. The first method used no sample treatment and a universal reversed-phase chromatographic separation. On the contrary, the second method was based on an off-line SPE preconcentration method, optimized for the isolation and extraction of polyphenolic compounds, and a reversed-phase chromatographic separation optimized for polyphenols as well. For the off-line SPE method, the use of HLB (3 mL, 60 mg) cartridges, and 6 mL of methanol as eluent, allowed to achieve acceptable recoveries for the selected polyphenols. The obtained HPLC-UV fingerprints were subjected to an exploratory principal component analysis (PCA) and a classificatory partial least squares-discriminant analysis (PLS-DA) to evaluate their viability as sample chemical descriptors for authentication purposes. Both HPLC-UV fingerprints resulted to be appropriate to discriminate between blossom honeys and honeydew honeys. However, a superior performance was accomplished with off-line SPE HPLC-UV polyphenolic fingerprints, being able to differentiate among the different blossom honey samples under the study (orange/lemon blossom, rosemary, thyme, eucalyptus, and heather). In general, this work demonstrated the feasibility of HPLC-UV fingerprints, especially those obtained after off-line SPE polyphenolic isolation and extraction, to be employed as honey chemical descriptors to address the characterization and classification of honey samples according to their botanical origin.