Background: The prognosis of metastatic renal cell carcinoma (RCC) patients vary widely because of clinical and pathological heterogeneity. We aimed to develop a novel nomogram to predict overall survival (OS) for this population. Methods: Metastatic RCC patients were selected from the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2016. These patients were randomly assigned to a training set and a validation set at a ratio of 1:1. Significant prognostic factors of survival were identified through Cox regression models and then integrated to form a nomogram to predict 1-, 3- and 5-year OS. The nomogram was subsequently subjected to validations via the training and the validation sets. The performance of this model was evaluated by using Harrell’s concordance index (C-index), calibration curve, integrated discrimination improvement (IDI), net reclassification improvement (NRI), and decision curve analysis (DCA). Results: Overall, 2315 eligible metastatic RCC patients were enrolled from the SEER database. A nomogram of survival prediction for patients of newly diagnosed with metastatic RCC was established, in which eight clinical factors significantly associated with OS were involved, including Fuhrman grade, lymph node status, sarcomatoid feature, cancer-directed surgery, bone metastasis, brain metastasis, liver metastasis, and lung metastasis. The new model presented better discrimination power than the American Joint Committee on Cancer (AJCC) staging system (7th edition) in the training set (C-indexes, 0.701 vs. 0.612, P <0.001) and the validation set (C-indexes, 0.676 vs. 0.600, P <0.001). The calibration plots of the nomogram exhibited optimal agreement between the predicted values and the observed values. The results of NRI and IDI also indicated the superior predictive capability of the nomogram relative to the AJCC staging system. The DCA plots revealed higher clinical use of our model in survival prediction. Conclusions: We developed and validated an effective nomogram to provide individual OS prediction for metastatic RCC patients, which would be beneficial to clinical trial design, patient counseling, and therapeutic modality selection.