Requirements traceability is an important activity to reach an effective requirements management method in the requirements engineering. Requirement-to-Code Traceability Links (RtC-TLs) shape the relations between requirement and source code artifacts. RtC-TLs can assist engineers to know which parts of software code implement a specific requirement. In addition, these links can assist engineers to keep a correct mental model of software, and decreasing the risk of code quality degradation when requirements change with time mainly in large sized and complex software. However, manually recovering and preserving of these TLs puts an additional burden on engineers and is error-prone, tedious, and costly task. This paper introduces YamenTrace, an automatic approach and implementation to recover and visualize RtC-TLs in Object-Oriented software based on Latent Semantic Indexing (LSI) and Formal Concept Analysis (FCA). The originality of YamenTrace is that it exploits all code identifier names, comments, and relations in TLs recovery process. YamenTrace uses LSI to find textual similarity across software code and requirements. While FCA employs to cluster similar code and requirements together. Furthermore, YamenTrace gives a visualization of recovered TLs. To validate YamenTrace, it applied on three case studies. The findings of this evaluation prove the importance and performance of YamenTrace proposal as most of RtC-TLs were correctly recovered and visualized.