Wide-angle X-ray
scattering patterns were recorded for a series
of aliphatic butanol isomers (
n
-,
iso
-,
sec
-,
tert
-butanol) and their
phenyl derivatives (4-phenyl-1-butanol, 2-methyl-3-phenyl-1-propanol,
4-phenyl-2-butanol, and 2-methyl-1-phenyl-2-propanol, respectively)
to determine their atomic-scale structure with particular emphasis
on the formation of supramolecular clusters. In addition, molecular
dynamics simulations were carried out and yielded good agreement with
experimental data. The combination of experimental and theoretical
results allowed clarification of the origin of the pre-peak appearing
at low scattering angles for the aliphatic butanols and its absence
for their phenyl counterparts. It was demonstrated that the location
of the hydroxyl group in the molecule of alkyl butanol, its geometry,
and rigidity determine the morphology of the supramolecular clusters,
while the addition of the aromatic moiety causes more disordered organization
of molecules. The phenyl group significantly decreases the number
of hydrogen bonds and size of the supramolecular clusters formed via
the O–H···O scheme. The lower association ability
of phenyl alcohols via H-bonds is additionally attenuated by the appearance
of competing π–π configurations evidenced by the
structural models.