Despite its various health-promoting bioactivities, poor water solubility, chemical instability, and low bioavailability of lutein have limited its further application in the food industry. This paper reports a simple and a green pH-driven method to synthesize lutein-loaded lysozyme−hyaluronan complex colloidal nanoparticles (Lut@LYS-HANPs) able to overcome the aforementioned shortcomings. The fabricated Lut@LYS-HANPs exhibited a stabilized particle size (164 nm), negative surface zetapotential (−44.86 mV), excellent long-term storage stability, and favorable redispersibility. The encapsulation efficiency and loading ability of lutein in the prepared Lut@LYS-HANPs were 96.23 and 11.07%, respectively. Infrared spectra demonstrated that the dominant interaction forces behind the formed Lut@LYS-HANPs were hydrogen bonds and hydrophobic and electrostatic interactions. The circular dichroism spectra indicated that lutein incorporation mainly changed the α-helix and β-sheet contents of lysozyme. Besides, the