Here,
for the first time, we present data on proton conductivity
of high-entropy, single-phase perovskites. The BaZr0.2Sn0.2Ti0.2Hf0.2Ce0.2O3−δ, BaZr0.2Sn0.2Ti0.2Hf0.2Y0.2O3−δ, BaZr1/7Sn1/7Ti1/7Hf1/7Ce1/7Nb1/7Y1/7O3−δ, and BaZr0.15Sn0.15Ti0.15Hf0.15Ce0.15Nb0.15Y0.10O3−δ single-phase perovskites
were synthesized. Before electrical measurements, materials were characterized
using X-ray diffraction (XRD), scanning electron microscopy (SEM),
X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis
(TGA). The following experimental results demonstrated that studied
high-entropy perovskites are proton conductors: (1) The observed mass
increase upon the switch from dry to wet atmosphere confirmed the
water incorporation into materials structure. (2) The electrochemical
impedance spectroscopy (EIS) revealed that the total conductivity
increased while its activation energy decreased in the presence of
water vapor in the atmosphere. (3) The conductivity in atmosphere
humidified with H2O and D2O differed one from
another, showing typical of proton conductors isotope effect in high-entropy
oxides.