Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Reactivation involves the accommodation of geologically separable displacement events (intervals >1 Ma) along pre-existing structures. The definition of a significant period of quiescence is central to this phenomenological definition and the duration of the interval chosen represents the resolution limit of reactivation criteria found in most ancient settings. In neotectonic environments, reactivation can be further defined as the accommodation of displacements along structures that formed prior to the onset of the current tectonic regime. This mechanistic definition cannot always be applied to ancient settings due to the uncertainties in constraining relative plate motion vectors. Four sets of criteria may be used to recognize reactivation in the geological record: stratigraphic, structural, geochronological and neotectonic. Some structural criteria may not be reliable if used in isolation to identify reactivated structures. Much of the previously published evidence cited to invoke structural inheritance is equivocal as it uses similarities in trend, dip or three-dimensional shape of structures. Numerous fault and shear zone processes can cause significant weakening both synchronously with deformation and in the long-term and may be invoked to explain reactivation. The collage of fault-bounded blocks forming most continents therefore carries a long-term architecture of inheritance which can explain much of the observed complexity of continental deformation zones.
Reactivation involves the accommodation of geologically separable displacement events (intervals >1 Ma) along pre-existing structures. The definition of a significant period of quiescence is central to this phenomenological definition and the duration of the interval chosen represents the resolution limit of reactivation criteria found in most ancient settings. In neotectonic environments, reactivation can be further defined as the accommodation of displacements along structures that formed prior to the onset of the current tectonic regime. This mechanistic definition cannot always be applied to ancient settings due to the uncertainties in constraining relative plate motion vectors. Four sets of criteria may be used to recognize reactivation in the geological record: stratigraphic, structural, geochronological and neotectonic. Some structural criteria may not be reliable if used in isolation to identify reactivated structures. Much of the previously published evidence cited to invoke structural inheritance is equivocal as it uses similarities in trend, dip or three-dimensional shape of structures. Numerous fault and shear zone processes can cause significant weakening both synchronously with deformation and in the long-term and may be invoked to explain reactivation. The collage of fault-bounded blocks forming most continents therefore carries a long-term architecture of inheritance which can explain much of the observed complexity of continental deformation zones.
Single-phase horizontal bulk permeabilities for 3 km × 3 km volumes of varying thickness of a typical Brent permeability sequence have been calculated, both before and after faulting by a range of sub-seismic fault arrays, with maximum fault displacements of 20m – 2m. The models incorporate realistic juxtaposition geometries across fault surfaces. Results are expressed in terms of fractional bulk permeabilities ( Kf ), i.e. ratio of bulk permeability of faulted model and of pre-faulting model. Fault and fault array variables modelled and tested were fault density, spatial distribution, orientation distribution and fault zone permeability relative to the host rocks, expressed as transmissibility factor ( Tf ). Realistic fault zone thicknesses were incorporated by use of a scaling factor. Low, moderate and high fault densities have significant and markedly different effects on Kf whereas the effects of spatial and orientation distribution variations are slight except at very low Tf values ( Tf < 0.001). The relative insignificance of fault spatial distributions is due to closer fault spacing resulting in locally high hydraulic gradients which increase flow through fault surfaces unless these surfaces have very low Tf values. Prediction of fault zone hydraulic properties remains the most important factor contributing to modelling uncertainties.
The growth of normal fault arrays is examined in basins where sedimentation rates were higher than fault displacement rates and where fault growth histories are recorded by thickness and displacement variations within syn-faulting sequences. Progressive strain localization is the principal feature of the growth history of normal faults for study areas from the Inner Moray Firth, a sub-basin of the North Sea, and from the Timor Sea, offshore Australia. The kinematics of faulting are similar in both study areas. Fault displacement rates correlate with fault size, where size is measured in terms of either displacement or length. Small faults have higher mortality rates than larger faults throughout the growth of the fault system. Displacement and strain are progressively localized onto the larger faults at the expense of smaller faults at progressively larger scales. Strain localization and the preferential growth of larger faults are attributed to geometric factors, such as size and location, rather than to the mechanical properties of fault rock in individual faults. This conclusion is supported by numerical models that reproduce the main characteristics of fault system growth established from both study areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.