A series of accurate ab initio calculations on Cu p O q finite clusters, properly embedded on the Madelung potential of the infinite lattice, have been performed in order to determine the local effective interactions in the CuO 2 planes of La 2−x Sr x CuO 4 compounds. The values of the first-neighbor interactions, magnetic coupling (J N N =125 meV) and hopping integral (t N N =-555 meV), have been confirmed. Important additional effects are evidenced, concerning essentially the second-neighbor hopping integral t N N N =+110meV, the displacement of a singlet toward an adjacent colinear hole, h abc SD =-80 meV, a non-negligible hole-hole repulsion V N N − V N N N =0.8 eV and a strong anisotropic effect of the presence of an adjacent hole on the values of the first-neighbor interactions. The dependence of J N N and t N N on the position of neighbor hole(s) has been rationalized from the two-band model and checked from a series of additional ab initio calculations. An extended t-J model Hamiltonian has been proposed on the basis of these results. It is argued that the here-proposed three-body effects may play a role in the charge/spin separation observed in these compounds, that is, in the formation and dynamic of stripes.