Food-borne infections caused by Salmonella enterica species are increasing globally, and pregnancy poses a high risk. Pregnant mice rapidly succumb to S. enterica serovar Typhimurium infection. To determine the mechanisms involved, we addressed the role of inflammation and bacterial burden in causing placental and systemic disease. In vitro, choriocarcinoma cells were a highly conducive niche for intracellular S. Typhimurium proliferation. While infection of mice with S. Typhimurium wild-type (WT) and mutant (⌬aroA and ⌬invA) strains led to profound pathogen proliferation and massive burden within placental cells, only the virulent WT S. Typhimurium infection evoked total fetal loss and adverse host outcome. This correlated with substantial placental expression of granulocyte colony-stimulating factor (G-CSF), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-␣) and increased serum inflammatory cytokines/chemokines, such as G-CSF, IL-6, CCL1, and KC, evoked by WT S. Typhimurium infection. In contrast, infection with high doses of S. Typhimurium ⌬aroA, despite causing massive placental infection, resulted in reduced inflammatory cellular and cytokine response. While S. Typhimurium WT bacteria were dispersed in large numbers across all regions of the placenta, including the deeper labyrinth trophoblast, S. Typhimurium ⌬aroA bacteria localized primarily to the decidua. This correlated with the widespread placental necrosis accompanied by neutrophil infiltration evoked by the S. Typhimurium WT bacteria. Thus, the ability of Salmonella to localize to deeper layers of the placenta and the nature of inflammation triggered by the pathogen, rather than bacterial burden, profoundly influenced placental integrity and host survival.Typhoid fever in humans, caused by Salmonella enterica serovar Typhi, is widespread in developing nations with poor hygienic conditions, whereas nontyphoidal intestinal disease caused by S. enterica serovar Typhimurium, a food-borne pathogen, is of global concern (17). Vaccines against typhoid fever offer variable protection against different serovars and have had limited use (24). Salmonella species are also becoming more resistant to antibiotics (19). Young, elderly, pregnant, and HIV-infected individuals form the high-risk groups for Salmonella infections (7). The mouse model of S. Typhimurium infection mimics human typhoid, causing disseminated disease. The T-cell response to S. Typhimurium is generally detectable only beyond 7 to 14 days (26, 37). Thus, innate immunity and inflammatory cytokines are critical in controlling the early primary infection (47).Salmonella species can cause pregnancy complications such as chorioamnionitis, transplacental fetal infection, abortions, and neonatal and maternal septicemia (15,44). Intracellular infections in general can lead to pregnancy complications such as preterm labor and preeclampsia (12,29,38). Infections with many chronic intracellular pathogens may also be exacerbated during pregnancy and/or pose a risk of reactivation postpartum (3,2...