This study assumed that vascular perfusion, antrum growth, leptin, nitric oxide (NO) and insulin like growth factor 1 (IGF-1) play an important role during selection and deviation of mares' next dominant follicle. Five broad mares were subjected to daily rectal Doppler ultrasonographic examination and blood sampling for 2 successive estrous cycles (n = 10). Using electronic calipers, three diameters were taken to estimate area and volume of first (F1O) and second large follicles (F2O) on the ovulated ovary with first (F1C) and second large follicles (F2C) on contralateral ovary. Follicles' area, circumference, antrum area, area of color-and power-Doppler were measured in pixels. Days after ovulation affected significantly (P < 0.0001) follicles blood flow, dimensions and measured hormones. On day 4 after ovulation, the follicle that had a mean diameter of 1.31 ± 0.06 and reached to 1.41 ± 0.06 cm on day 5, the lowest area/cm 2 (1.38 ± 0.18), highest area/pixsel (10229 ± 366), antrum/pixel (7671 ± 357), highest volume (5.54 ± 0.09), lowest power blood flow area (2060.25 ± 8.52) and percent colored pixels of follicle without antrum (80.57 ± 0.72) was selected. Deviation started from day 9 and completed on day 10 where the dominant follicle attained the highest diameter, area, volume, area and antrum area in pixels, color blood flow red area, and percent of colored pixels of follicle without its antrum, leptin, IGF-1 and NO but the lowest power blood flow area and percent of total follicle colored pixels. Our assumption that follicle selection and deviation did not depend only on diameter but also on blood flow, antrum growth, leptin and IGF-1 was proved.