Background and Objective
An ever-growing body of evidence supports the impact of cytokine modulation on the patient’s phenotypic drug response. The aim of this systematic review was to analyze the clinical studies that assessed the pharmacokinetics of victim drugs of this drug–disease interaction in the presence of different scenarios of cytokine modulation in comparison with baseline conditions.
Methods
We conducted a systematic review by searching the PubMed-MEDLINE database from inception until February 2022 to retrieve prospective and/or retrospective observational studies, population pharmacokinetic studies, phase I studies, and/or case series/reports that investigated the impact of cytokine modulation on the pharmacokinetic behavior of victim drugs. Only studies providing quantitative pharmacokinetic data of victim drugs by comparing normal status versus clinical conditions with documented cytokine modulation or by assessing the influence of anti-inflammatory biological agents on metabolism and/or transport of victim drugs were included.
Results
Overall, 26 studies were included. Rheumatoid arthritis (6/26; 23.1%) and sepsis (5/26; 19.2%) were the two most frequently investigated pro-inflammatory clinical scenarios. The victim drug most frequently assessed was midazolam (14/26; 53.8%; as a probe for cytochrome P450 [CYP] 3A4). Cytokine modulation showed a moderate inhibitory effect on CYP3A4-mediated metabolism (area under the concentration–time curve increase and/or clearance decrease between 1.98-fold and 2.59-fold) and a weak-to-moderate inhibitory effect on CYP1A2, CYP2C9, and CYP2C19-mediated metabolism (in the area under the concentration–time curve increase or clearance decrease between 1.29-fold and 1.97-fold). Anti-interleukin-6 agents showed remarkable activity in counteracting downregulation of CYP3A4-mediated activity (increase in the area under the concentration–time curve between 1.75-fold and 2.56-fold).
Conclusions
Cytokine modulation may cause moderate or weak-to-moderate downregulation of metabolism/transport of victim drugs, and this may theoretically have relevant clinical consequences.
Supplementary Information
The online version contains supplementary material available at 10.1007/s40262-022-01173-8.