Introduction:It is well known that hemoglobin is a scavenger of nitric oxide (NO). The present study used a canine model to test the hypothesis that acute normovolemic hemodilution (ANH) affects NO-mediated coronary vasodilation.Methods: Studies were performed in 18 open-chest, anesthetized dogs. In Series 1, the contribution of endogenous NO to coronary vasodilatation during ANH with 5% dextran-40 (reduction in hematocrit by 50%) was assessed. This was accomplished by comparing myocardial blood flow (MBF; radioactive microspheres) in the left anterior descending (LAD) region, which was treated with the NO synthase inhibitor, N G -nitro-Larginine methyl ester (L-NAME), to that in the circumflex (control) region. In Series 2, the LAD was perfused via a controlledpressure extracorporeal system with coronary blood flow (CBF) measured with an ultrasonic, transit-time flow transducer. The dose-dependent increases in CBF caused by acetylcholine (ACh), which releases endogenous NO from the vascular endothelium, and sodium nitroprusside (SNP), which provides exogenous NO, were compared before and during ANH.Results: Acute normovolemic hemodilution caused similar (approximately twofold) increases in MBF (P < 0.01) in the absence and presence of L-NAME, and it did not affect the dose-related increases in CBF caused by ACh and SNP.Conclusions: Series 1: under baseline conditions, hemoglobin in red blood cells does not limit the coronary vasodilatation resulting from tonic release of NO; NO does not mediate coronary vasodilation during ANH. Series 2: ANH does not influence the coronary vasodilating effects of increased levels of NO, whether due to endogenous release (ACh) or infusion of an NO donor (SNP).