Systemic symptom detection in telemetry of ISS with explainability using FRAM and SpecTRM
Shota Iino,
Hideki Nomoto,
Takashi Fukui
et al.
Abstract:Explainability is important for machine learning-based anomaly detection of safety critical systems. In this respect, we propose a new systemic symptom detection method by combining two methodologies: the Functional Resonance Analysis Method (FRAM) and the Specification Tools and Requirement Methodology-Requirement Language (SpecTRM-RL) with machine learning-based normal behavior prediction model. The method was verified with data of thermal control system of Japanese Experimental Module of the International S… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.