The symptoms of the flu, such as fever, drowsiness, and malaise, are the sole means by which this common clinical syndrome is defined. The syndrome is usually the first clinical manifestation of both acute bacterial and viral infections. In the case of acute bacterial infections, several proinflammatory cytokines induced by bacterial products have been implicated as the causative agents of the flu syndrome. Viruses induce similar cytokines to bacteria, plus substantial amounts of interferon-alpha (IFN-alpha), although the direct association of these cytokines with the viral flu syndrome is less clear. Furthermore, the viral inducer(s) of cytokines has not been defined. The best candidate cytokine inducer associated with a majority of viral infections is virus-associated double-stranded RNA (dsRNA). This review examines the essential physical properties of toxic dsRNA, the cytokines induced by it, its viral and cellular sources, evidence for its presence in infected cells, its quantities in normal and infected cells, its cytotoxic mechanisms, and its cell-penetration properties. Toxic effects of viruses and dsRNA are compared. Energetics and extraction artifact issues are also discussed. Whereas most research on dsRNA toxicity has employed synthetic dsRNA, studies with virus-associated dsRNA are featured when available. Finally, a model for how viral dsRNA might initiate systemic disease is presented.