BackgroundMicrocephaly has become a major public health problem in Brazil. The total number of newborns with microcephaly was reported to be >4000 in June 2016. Studies suggest that Zika Virus is a major cause of new microcephaly cases in Brazil. Inside the uterus, the foetus is surrounded by the Amniotic Fluid, a proximal fluid that contains foetal and maternal cells as well as microorganisms and where Zika Virus was already found.Case presentationA previous study reported the presence of the Zika Virus in the amniotic fluid (collected in the 28th gestational week) of two pregnant women carrying microcephaly foetuses in Brazil. The virus was detected by means of real-time PCR and metatranscriptomic analysis. We compared the microbiome of these two cases with metatranscriptomic sequences from 16 pregnant women collected at various times in their pregnanciesConclusionSeveral strains of bacteria (e.g., Streptococcus and Propionibacterium) found in Amniotic Fluid may be involved in neurological diseases. When the foetus is infected by the Zika Virus, due to neurological damage, they do not move inside the uterus, thus changing the Amniotic Fluid environment, potentially leading to secondary problems. Zika infection could also lead to an immunodeficient state, making bacterial colonization of the foetuses easier. An altered microbial composition during pregnancy may also result in harmful secondary metabolite production from certain microbes that further impair foetal brain development. However, these observations of potentially harmful microbial species are correlations and thus cannot be assumed to be causative agents of (microcephaly) disease. In our study, microbial and parasitic diversity of the Amniotic Fluid was lower in patients infected by ZIKV, compared to that of Prenatal and Preterm controls. The present study was a first attempt to shed light on the microbial and parasitic diversity associated with ZIKV-infected pregnant women bearing microcephaly foetuses, and the presence of diverse microbial and parasite communities in the Amniotic Fluid suggests a poor health status of both the pregnant women and the foetuses they carry.Electronic supplementary materialThe online version of this article (doi:10.1186/s12920-016-0242-1) contains supplementary material, which is available to authorized users.