We study entanglement generation in a pair of qubits interacting with an
initially correlated system. Using time independent perturbation theory and the
adiabatic theorem, we show conditions under which the qubits become entangled
as the joint system evolves into the ground state of the interacting theory. We
then apply these results to the case of qubits interacting with a scalar
quantum field. We study three different variations of this setup; a quantum
field subject to Dirichlet boundary conditions, a quantum field interacting
with a classical potential and a quantum field that starts in a thermal state.Comment: 9 pages, 6 figures. v2: reference [14] adde